Typedef
| Static Public Summary | ||
| public |
KComplexInputData: Complex | number | boolean | string | Array<number> | {_re: number, _im: number} | {doubleValue: number} | {toString: function} Complex type argument. |
|
| public |
Matrix type argument. |
|
| public |
Collection of calculation settings for matrix. |
|
| public |
Analysis of variance. |
|
| public |
Output for multiple regression analysis |
|
| public |
Regression table. |
|
| public |
Regression table data. |
|
| public |
Settings for multiple regression analysis |
|
| public |
Vector state |
|
| public |
|
|
| public |
Output for principal component analysis. |
|
| public |
Settings for principal component analysis. |
|
| public |
Collection of calculation settings for matrix. |
|
| public |
Collection of calculation settings for matrix. |
|
Static Public
public KComplexInputData: Complex | number | boolean | string | Array<number> | {_re: number, _im: number} | {doubleValue: number} | {toString: function} source
Complex type argument.
- Complex
- number
- boolean
- string
- Array<number>
- {_re:number,_im:number}
- {doubleValue:number}
- {toString:function}
Initialization can be performed as follows.
- 1200, "1200", "12e2", "1.2e3"
- "3 + 4i", "4j + 3", [3, 4].
public KMatrixInputData: Complex source
Matrix type argument.
- Matrix
- Complex
- number
- string
- Array<string|number|Complex|Matrix>
- Array<Array<string|number|Complex|Matrix>>
- {doubleValue:number}
- {toString:function}
Initialization can be performed as follows.
- 10, "10", "3 + 4j", "[ 1 ]", "[1, 2, 3]", "[1 2 3]", [1, 2, 3],
- [[1, 2], [3, 4]], "[1 2; 3 4]", "[1+2i 3+4i]",
- "[1:10]", "[1:2:3]" (MATLAB / Octave / Scilab compatible).
public KMatrixSettings: Object source
Collection of calculation settings for matrix.
- Available options vary depending on the method.
public KMultipleRegressionAnalysisAnova: Object source
Analysis of variance. ANOVA.
Properties:
| Name | Type | Attribute | Description |
| regression | KMultipleRegressionAnalysisVectorState | regression. |
|
| residual | KMultipleRegressionAnalysisVectorState | residual error. |
|
| total | KMultipleRegressionAnalysisVectorState | total. |
|
| F | number | F value. Dispersion ratio (F0) |
|
| significance_F | number | Significance F. Test with F distribution with q, n-q-1 degrees of freedom.(Probability of error.) |
public KMultipleRegressionAnalysisOutput: Object source
Output for multiple regression analysis
Properties:
| Name | Type | Attribute | Description |
| q | number | number of explanatory variables. |
|
| n | number | number of samples. |
|
| predicted_values | number[][] | predicted values. (column vector) |
|
| sY | number | Variance of predicted values of target variable. |
|
| sy | number | Variance of measured values of target variable. |
|
| multiple_R | number | Multiple R. Multiple correlation coefficient. |
|
| R_square | number | R Square. Coefficient of determination. |
|
| adjusted_R_square | number | Adjusted R Square. Adjusted coefficient of determination. |
|
| ANOVA | KMultipleRegressionAnalysisAnova | analysis of variance. |
|
| Ve | number | Unbiased variance of residuals. (Ve) |
|
| standard_error | number | Standard error. (SE) |
|
| AIC | number | Akaike's Information Criterion. (AIC) |
|
| regression_table | KMultipleRegressionAnalysisPartialRegression | Regression table. |
public KMultipleRegressionAnalysisPartialRegression: Object source
Regression table.
Properties:
| Name | Type | Attribute | Description |
| intercept | KMultipleRegressionAnalysisPartialRegressionData | Intercept. |
|
| parameters | KMultipleRegressionAnalysisPartialRegressionData[] | Parameters. |
public KMultipleRegressionAnalysisSettings: Object source
Settings for multiple regression analysis
Properties:
| Name | Type | Attribute | Description |
| samples | KMatrixInputData | explanatory variable. (Each column is a parameters and each row is a samples.) |
|
| target | KMatrixInputData | response variable. / actual values. (column vector) |
|
| is_standardised | boolean |
|
Use standardized partial regression coefficients. |
public KPrincipalComponent: Object source
Properties:
| Name | Type | Attribute | Description |
| eigen_value | number | Contribution. Eigen value. Variance of principal components. |
|
| factor_loading | number[] | Factor loading. Eigen vector. Principal component coefficients. |
|
| factor_loading_contribution_rate | number[] | Factor loading contribution rate. |
|
| cumulative_contribution_ratio | number | Cumulative contribution ratio. |
|
| contribution_ratio | number | Contribution ratio. |
|
| score | number[] | Principal component score. |
public KPrincipalComponentAnalysisOutput: Object source
Output for principal component analysis.
Properties:
| Name | Type | Attribute | Description |
| principal_component | KPrincipalComponent[] | Principal component. |
public KPrincipalComponentAnalysisSettings: Object source
Settings for principal component analysis.
Properties:
| Name | Type | Attribute | Description |
| samples | KMatrixInputData | explanatory variable. (Each column is a parameters and each row is a samples.) |
|
| is_unbiased | boolean |
|
Use unbiased variance when calculating variance from samples. |
| is_standardised | boolean |
|
Use standardized explanatory variables. Use the correlation matrix instead of the covariance matrix. |
public KSignalSettings: Object source
Collection of calculation settings for matrix.
- Available options vary depending on the method.
