src/math/core/tools/Statistics.js
/**
* The script is part of konpeito-ES3.
*
* AUTHOR:
* natade (http://twitter.com/natadea)
*
* LICENSE:
* The MIT license https://opensource.org/licenses/MIT
*/
import Polyfill from "../../tools/Polyfill.js";
import Complex from "../Complex.js";
import Matrix from "../Matrix.js";
/**
* Collection of calculation settings for matrix.
* - Available options vary depending on the method.
* @typedef {Object} KStatisticsSettings
* @property {?string|?number} [dimension="auto"] Calculation direction. 0/"auto", 1/"row", 2/"column", 3/"both".
* @property {Object} [correction] Correction value. For statistics. 0(unbiased), 1(sample).
*/
/**
* Class for statistical processing for `Matrix` class.
* - These methods can be used in the `Matrix` method chain.
* - This class cannot be called directly.
*/
export default class Statistics {
/**
* Maximum number.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix} max([A, B])
*/
static max(x, type) {
const X = Matrix._toMatrix(x);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
let x = data[0];
for(let i = 1; i < data.length; i++) {
if(x.compareTo(data[i]) < 0) {
x = data[i];
}
}
return [x];
};
return X.eachVector(main, dim);
}
/**
* Minimum number.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix} min([A, B])
*/
static min(x, type) {
const X = Matrix._toMatrix(x);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
let x = data[0];
for(let i = 1; i < data.length; i++) {
if(x.compareTo(data[i]) > 0) {
x = data[i];
}
}
return [x];
};
return X.eachVector(main, dim);
}
/**
* Sum.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static sum(x, type) {
const X = Matrix._toMatrix(x);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
// カハンの加算アルゴリズム
let sum = Complex.ZERO;
let delta = Complex.ZERO;
for(let i = 0; i < data.length; i++) {
const new_number = data[i].add(delta);
const new_sum = sum.add(new_number);
delta = new_sum.sub(sum).sub(new_number);
sum = new_sum;
}
return [sum];
};
return X.eachVector(main, dim);
}
/**
* Arithmetic average.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static mean(x, type) {
const X = Matrix._toMatrix(x);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
// カハンの加算アルゴリズム
let sum = Complex.ZERO;
let delta = Complex.ZERO;
for(let i = 0; i < data.length; i++) {
const new_number = data[i].add(delta);
const new_sum = sum.add(new_number);
delta = new_sum.sub(sum).sub(new_number);
sum = new_sum;
}
return [sum.div(data.length)];
};
return X.eachVector(main, dim);
}
/**
* Product of array elements.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static prod(x, type) {
const X = Matrix._toMatrix(x);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
let x = Complex.ONE;
for(let i = 0; i < data.length; i++) {
x = x.mul(data[i]);
}
return [x];
};
return X.eachVector(main, dim);
}
/**
* Geometric mean.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static geomean(x, type) {
const X = Matrix._toMatrix(x);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
let x = Complex.ONE;
for(let i = 0; i < data.length; i++) {
x = x.mul(data[i]);
}
return [x.pow(Complex.create(data.length).inv())];
};
return X.eachVector(main, dim);
}
/**
* Median.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static median(x, type) {
const X = Matrix._toMatrix(x);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
/**
* @param {Complex} a
* @param {Complex} b
* @returns {number}
*/
const compare = function(a, b){
return a.compareTo(b);
};
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
data.sort(compare);
let y;
if((data.length % 2) === 1) {
y = data[Math.floor(data.length / 2)];
}
else {
const x1 = data[Math.floor(data.length / 2) - 1];
const x2 = data[Math.floor(data.length / 2)];
y = x1.add(x2).div(Complex.TWO);
}
return [y];
};
return X.eachVector(main, dim);
}
/**
* Mode.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static mode(x, type) {
const X = Matrix._toMatrix(x);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
/**
* @param {Complex} a
* @param {Complex} b
* @returns {number}
*/
const compare = function(a, b){
return a.compareTo(b);
};
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
data.sort(compare);
/**
* @type {any}
*/
const map = {};
for(let i = 0; i < data.length; i++) {
const str = data[i].real + " " + data[i].imag;
if(!map[str]) {
map[str] = {
complex : data[i],
value : 1
};
}
else {
map[str].value++;
}
}
let max_complex = Complex.ZERO;
let max_number = Number.NEGATIVE_INFINITY;
for(const key in map) {
const tgt = map[key];
if(tgt.value > max_number) {
max_number = tgt.value;
max_complex = tgt.complex;
}
}
return [max_complex];
};
return X.eachVector(main, dim);
}
/**
* Moment.
* - Moment of order n. Equivalent to the definition of variance at 2.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {number} nth_order
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static moment(x, nth_order, type) {
const X = Matrix._toMatrix(x);
const M = Statistics.mean(X);
// 補正値 0(不偏分散), 1(標本分散)。規定値は、標本分散とする
const cor = !(type && typeof type.correction === "number") ? 1: Matrix._toDouble(type.correction);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
const order = Matrix._toComplex(nth_order);
let col = 0;
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
let mean;
if(M.isScalar()) {
mean = M.scalar();
}
else {
mean = M.getComplex(col++);
}
let x = Complex.ZERO;
for(let i = 0; i < data.length; i++) {
// 計算方法について
// ・複素数は、ノルムをとらずに複素数用のpowを使用したほうがいいのか
// ・分散と同様にnormで計算したほうがいいのか
// 複素数でのモーメントの定義がないため不明であるが、
// 分散を拡張した考えであれば、normをとった累乗のほうが良いと思われる。
const a = data[i].sub(mean);
x = x.add(a.pow(order));
}
if(data.length === 1) {
return [x.div(data.length)];
}
else {
return [x.div(data.length - 1 + cor)];
}
};
return X.eachVector(main, dim);
}
/**
* Variance.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static variance(x, type) {
const X = Matrix._toMatrix(x);
const M = Statistics.mean(X);
// 補正値 0(不偏分散), 1(標本分散)。規定値は、不偏分散とする
const cor = !(type && typeof type.correction === "number") ? 0: Matrix._toDouble(type.correction);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
let col = 0;
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
if(data.length === 1) {
// 要素が1であれば、分散は0固定
return [Complex.ZERO];
}
const mean = M.getComplex(col++);
// 分散は、ノルムの2乗で計算するため必ず実数になる。
let x = 0;
for(let i = 0; i < data.length; i++) {
const a = data[i].sub(mean).norm();
x += a * a;
}
return [Complex.create(x / (data.length - 1 + cor))];
};
return X.eachVector(main, dim);
}
/**
* Standard deviation.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static std(x, type) {
const X = Matrix._toMatrix(x);
// 補正値 0(不偏分散), 1(標本分散)。規定値は、不偏分散とする
const cor = !(type && typeof type.correction === "number") ? 0: Matrix._toDouble(type.correction);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
const M = Statistics.variance(X, { correction : cor, dimension : dim });
M._each(function(num) {
return num.sqrt();
});
return M;
}
/**
* Mean absolute deviation.
* - The "algorithm" can choose "0/mean"(default) and "1/median".
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {?string|?number} [algorithm]
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static mad(x, algorithm, type) {
const X = Matrix._toMatrix(x);
const alg = !algorithm ? "mean" : (typeof algorithm === "string" ? algorithm : Matrix._toInteger(algorithm));
const dim = !(type && type.dimension) ? "auto" : type.dimension;
if((alg === "mean") || (alg === 0)) {
return Statistics.mean(X.sub(Statistics.mean(X, {dimension : dim} )).abs(), {dimension : dim});
}
else if((alg === "median") || (alg === 1)) {
return Statistics.median(X.sub(Statistics.median(X, {dimension : dim} )).abs(), {dimension : dim});
}
else {
throw "mad unsupported argument " + alg;
}
}
/**
* Skewness.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static skewness(x, type) {
const X = Matrix._toMatrix(x);
// 補正値 0(不偏), 1(標本)。規定値は、標本とする
const cor = !(type && typeof type.correction === "number") ? 1: Matrix._toDouble(type.correction);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
const order = Statistics.moment(X, 3, { correction : cor, dimension : dim });
const std = Statistics.std(X, { correction : cor, dimension : dim });
if(cor === 1) {
return order.dotdiv(std.dotpow(3));
}
else {
return order.dotdiv(std.dotpow(3)).dotmul(2);
}
}
/**
* Covariance matrix or Covariance value.
* - Get a variance-covariance matrix from 1 matrix.
* - Get a covariance from 2 vectors.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings|import("../Matrix.js").KMatrixInputData} [y_or_type]
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static cov(x, y_or_type, type) {
const X = Matrix._toMatrix(x);
// 補正値 0(不偏分散), 1(標本分散)。規定値は、不偏分散とする
let cor = 0;
let Y = null;
if(y_or_type !== undefined) {
if(type !== undefined) {
cor = !(type && typeof type.correction === "number") ? 0: Matrix._toDouble(type.correction);
Y = Matrix._toMatrix(y_or_type);
}
else {
if(typeof y_or_type === "object" && ("correction" in y_or_type)){
cor = Matrix._toDouble(y_or_type.correction);
}
else {
Y = Matrix._toMatrix(y_or_type);
}
}
}
// 1つの行列から分散共分散行列を作成する
if(Y === null) {
if(X.isVector()) {
return Statistics.variance(X, {correction : cor});
}
const correction = X.row_length === 1 ? 1 : cor;
const arr = X.matrix_array;
const mean = Statistics.mean(X).matrix_array[0];
// 上三角行列、対角行列
const y = new Array(X.column_length);
for(let a = 0; a < X.column_length; a++) {
const a_mean = mean[a];
y[a] = new Array(X.column_length);
for(let b = a; b < X.column_length; b++) {
const b_mean = mean[b];
let sum = Complex.ZERO;
for(let row = 0; row < X.row_length; row++) {
sum = sum.add((arr[row][a].sub(a_mean)).dot(arr[row][b].sub(b_mean)));
}
y[a][b] = sum.div(X.row_length - 1 + correction);
}
}
// 下三角行列を作る
for(let row = 1; row < y[0].length; row++) {
for(let col = 0; col < row; col++) {
y[row][col] = y[col][row];
}
}
return new Matrix(y);
}
// 2つのベクトルから共分散を求める
else {
if(!X.isVector() && !Y.isVector()) {
throw "vector not specified";
}
if(X.length() !== Y.length()) {
throw "X.length !== Y.length";
}
const x_mean = Statistics.mean(X).scalar();
const y_mean = Statistics.mean(Y).scalar();
const length = X.length();
const correction = length === 1 ? 1 : cor;
let sum = Complex.ZERO;
for(let i = 0; i < length; i++) {
sum = sum.add((X.getComplex(i).sub(x_mean)).dot(Y.getComplex(i).sub(y_mean)));
}
return new Matrix(sum.div(length - 1 + correction));
}
}
/**
* The samples are standardize to a mean value of 0, standard deviation of 1.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static standardization(x, type) {
const X = Matrix._toMatrix(x);
const mean_zero = X.sub(Statistics.mean(X, type));
const std_one = mean_zero.dotdiv(Statistics.std(mean_zero, type));
return std_one;
}
/**
* Correlation matrix or Correlation coefficient.
* - Get a correlation matrix from 1 matrix.
* - Get a correlation coefficient from 2 vectors.
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {KStatisticsSettings|import("../Matrix.js").KMatrixInputData} [y_or_type]
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static corrcoef(x, y_or_type, type) {
const X = Matrix._toMatrix(x);
// 補正値 0(不偏分散), 1(標本分散)。規定値は、不偏分散とする
let Y = null;
if(y_or_type !== undefined) {
if(type !== undefined) {
Y = Matrix._toMatrix(y_or_type);
}
else {
if(!(typeof y_or_type === "object" && ("correction" in y_or_type))){
Y = Matrix._toMatrix(y_or_type);
}
}
}
// 1つの行列から相関行列を作成する
if(Y === null) {
return Statistics.cov(Statistics.standardization(X, type), type);
}
// 2つのベクトルから相関係数を求める
else {
if(!X.isVector() && !Y.isVector()) {
throw "vector not specified";
}
if(X.length() !== Y.length()) {
throw "X.length[" + X.length() + "] !== Y.length[" + Y.length() + "]";
}
const covariance = Statistics.cov(X, Y, type);
const Xsd = X.std(type);
const Ysd = Y.std(type);
return covariance.div(Xsd.mul(Ysd));
}
}
/**
* Sort.
* - The "order" can choose "ascend"(default) and "descend".
* @param {import("../Matrix.js").KMatrixInputData} x
* @param {string} [order]
* @param {KStatisticsSettings} [type]
* @returns {Matrix}
*/
static sort(x, order, type) {
const X = Matrix._toMatrix(x);
const dim = !(type && type.dimension) ? "auto" : type.dimension;
const order_type = !order ? "ascend" : order;
/**
* @type {function(Complex, Complex): number }
*/
let compare;
if(order_type === "ascend") {
compare = function(a, b){
return a.compareTo(b);
};
}
else {
compare = function(a, b){
return b.compareTo(a);
};
}
/**
* @param {Array<Complex>} data
* @returns {Array<Complex>}
*/
const main = function(data) {
data.sort(compare);
return data;
};
return X.eachVector(main, dim);
}
}