src/math/core/tools/Probability.js
/**
* The script is part of konpeito-ES3.
*
* AUTHOR:
* natade (http://twitter.com/natadea)
*
* LICENSE:
* The MIT license https://opensource.org/licenses/MIT
*/
import Polyfill from "../../tools/Polyfill.js";
/**
* Return true if the value is integer.
* @param {number} x
* @returns {boolean}
* @ignore
*/
const isInteger = function(x) {
return (x - Math.trunc(x) !== 0.0);
};
/**
* Collection for calculating probability using real numbers.
* - These methods can be used in the `Matrix`, `Complex` method chain.
* - This class cannot be called directly.
*/
export default class Probability {
/**
* Log-gamma function.
* @param {number} x
* @returns {number}
*/
static gammaln(x) {
if(!isFinite(x)) {
if(isNaN(x)) {
return NaN;
}
else {
return Infinity;
}
}
// 参考:奥村,"C言語による最新アルゴリズム事典",p30,技術評論社,1991
const LOG_2PI = Math.log(2.0 * Math.PI);
//ベルヌーイ数
//http://fr.wikipedia.org/wiki/Nombre_de_Bernoulli
const K2 = ( 1.0 / 6.0) / (2 * 1);
const K4 = (-1.0 / 30.0) / (4 * 3);
const K6 = ( 1.0 / 42.0) / (6 * 5);
const K8 = (-1.0 / 30.0) / (8 * 7);
const K10 = ( 5.0 / 66.0) / (10 * 9);
const K12 = (-691.0 / 2730.0) / (12 * 11);
const K14 = ( 7.0 / 6.0) / (14 * 13);
const K16 = (-3617.0 / 510.0) / (16 * 15);
const K18 = (43867.0 / 798.0) / (18 * 17);
const K20 = (-174611.0 / 330.0) / (20 * 19);
const K22 = (854513.0 / 138.0) / (22 * 21);
const K24 = (-236364091.0 / 2730.0) / (24 * 23);
const K26 = (8553103.0 / 6.0) / (26 * 25);
const K28 = (-23749461029.0 / 870.0) / (28 * 27);
const K30 = (8615841276005.0 / 14322.0) / (30 * 29);
const K32 = (-7709321041217.0 / 510.0) / (32 * 31);
const LIST = [
K32, K30, K28, K26, K24, K22, K20, K18,
K16, K14, K12, K10, K8, K6, K4, K2
];
let v = 1;
let lx = x;
while(lx < LIST.length) {
v *= lx;
lx++;
}
const w = 1 / (lx * lx);
let y = LIST[0];
for(let i = 1; i < LIST.length; i++) {
y *= w;
y += LIST[i];
}
y /= lx;
y += 0.5 * LOG_2PI;
y += - Math.log(v) - lx + (lx - 0.5) * Math.log(lx);
return(y);
}
/**
* Incomplete gamma function upper side.
* @param {number} x
* @param {number} a
* @param {number} gammaln_a
* @returns {number}
*/
static q_gamma(x, a, gammaln_a) {
if(!isFinite(x)) {
if(x === Infinity) {
return 0.0;
}
else {
return NaN;
}
}
// 参考:奥村,"C言語による最新アルゴリズム事典",p227,技術評論社,1991
let k;
let result, w, temp, previous;
// Laguerreの多項式
let la = 1.0, lb = 1.0 + x - a;
if(x < 1.0 + a) {
return (1 - Probability.p_gamma(x, a, gammaln_a));
}
w = Math.exp(a * Math.log(x) - x - gammaln_a);
result = w / lb;
for(k = 2; k < 1000; k++) {
temp = ((k - 1.0 - a) * (lb - la) + (k + x) * lb) / k;
la = lb;
lb = temp;
w *= (k - 1.0 - a) / k;
temp = w / (la * lb);
previous = result;
result += temp;
if(result == previous) {
return(result);
}
}
return Number.NaN;
}
/**
* Incomplete gamma function lower side.
* @param {number} x
* @param {number} a
* @param {number} gammaln_a
* @returns {number}
*/
static p_gamma(x, a, gammaln_a) {
if(!isFinite(x)) {
if(x === Infinity) {
return 1.0;
}
else {
return NaN;
}
}
// 参考:奥村,"C言語による最新アルゴリズム事典",p227,技術評論社,1991
let k;
let result, term, previous;
if(x >= 1.0 + a) {
return (1.0 - Probability.q_gamma(x, a, gammaln_a));
}
if(x === 0.0) {
return 0.0;
}
result = term = Math.exp(a * Math.log(x) - x - gammaln_a) / a;
for(k = 1; k < 1000; k++) {
term *= x / (a + k);
previous = result;
result += term;
if(result == previous) {
return result;
}
}
return Number.NaN;
}
/**
* Gamma function.
* @param {number} z
* @returns {number}
*/
static gamma(z) {
// 参考:奥村,"C言語による最新アルゴリズム事典",p30,技術評論社,1991
if(z < 0) {
return (Math.PI / (Math.sin(Math.PI * z) * Math.exp(Probability.gammaln(1.0 - z))));
}
return Math.exp(Probability.gammaln(z));
}
/**
* Incomplete gamma function.
* @param {number} x
* @param {number} a
* @param {string} [tail="lower"] - lower (default) , "upper"
* @returns {number}
*/
static gammainc(x, a, tail) {
if(tail === "lower") {
return Probability.p_gamma(x, a, Probability.gammaln(a));
}
else if(tail === "upper") {
return Probability.q_gamma(x, a, Probability.gammaln(a));
}
else if(tail === undefined) {
// 引数を省略した場合
return Probability.gammainc(x, a, "lower");
}
else {
throw "gammainc unsupported argument [" + tail + "]";
}
}
/**
* Probability density function (PDF) of the gamma distribution.
* @param {number} x
* @param {number} k - Shape parameter.
* @param {number} s - Scale parameter.
* @returns {number}
*/
static gampdf(x, k, s) {
if(x === -Infinity) {
return 0.0;
}
let y = 1.0 / (Probability.gamma(k) * Math.pow(s, k));
y *= Math.pow( x, k - 1);
y *= Math.exp( - x / s );
return y;
}
/**
* Cumulative distribution function (CDF) of gamma distribution.
* @param {number} x
* @param {number} k - Shape parameter.
* @param {number} s - Scale parameter.
* @returns {number}
*/
static gamcdf(x, k, s) {
if(x < 0) {
return 0.0;
}
return Probability.gammainc(x / s, k);
}
/**
* Inverse function of cumulative distribution function (CDF) of gamma distribution.
* @param {number} p
* @param {number} k - Shape parameter.
* @param {number} s - Scale parameter.
* @returns {number}
*/
static gaminv(p, k, s) {
if((p < 0.0) || (p > 1.0)) {
return Number.NaN;
}
else if(p == 0.0) {
return 0.0;
}
else if(p == 1.0) {
return Number.POSITIVE_INFINITY;
}
const eps = 1.0e-12;
// 初期値を決める
let y = k * s;
// 単調増加関数なのでニュートン・ラフソン法で解く
// x_n+1 = x_n - f(x) / f'(x)
// ここで f(x) は累積分布関数、f'(x) は確率密度関数
// a = 累積分関数 → f(x) = 累積分関数 - a と置く。
// aの微分は0なので無関係
let delta, y2;
for(let i = 0; i < 100; i++) {
y2 = y - ((Probability.gamcdf(y, k, s) - p) / Probability.gampdf(y, k, s));
delta = y2 - y;
if(Math.abs(delta) <= eps) {
break;
}
y = y2;
if(y < 0.0) {
y = eps;
}
}
return y;
}
/**
* Beta function.
* @param {number} x
* @param {number} y
* @returns {number}
*/
static beta(x, y) {
// 参考:奥村,"C言語による最新アルゴリズム事典",p30,技術評論社,1991
return (Math.exp(Probability.gammaln(x) + Probability.gammaln(y) - Probability.gammaln(x + y)));
}
/**
* Incomplete beta function lower side.
* @param {number} x
* @param {number} a
* @param {number} b
* @returns {number}
*/
static p_beta(x, a, b) {
// 参考:奥村,"C言語による最新アルゴリズム事典",p231,技術評論社,1991
let k;
let result, term, previous;
if(a <= 0.0) {
return Number.POSITIVE_INFINITY;
}
if(b <= 0.0) {
if(x < 1.0) {
return 0.0;
}
else if(x === 1.0) {
return 1.0;
}
else {
return Number.POSITIVE_INFINITY;
}
}
if(x > (a + 1.0) / (a + b + 2.0)) {
return (1.0 - Probability.p_beta(1.0 - x, b, a));
}
if(x <= 0.0) {
return 0.0;
}
term = a * Math.log(x);
term += b * Math.log(1.0 - x);
term += Probability.gammaln(a + b);
term -= Probability.gammaln(a) + Probability.gammaln(b);
term = Math.exp(term);
term /= a;
result = term;
for(k = 1; k < 1000; k++) {
term *= a + b + k - 1.0;
term *= x;
term /= a + k;
previous = result;
result += term;
if(result === previous) {
return result;
}
}
return Number.NaN;
}
/**
* Incomplete beta function upper side.
* @param {number} x
* @param {number} a
* @param {number} b
* @returns {number}
*/
static q_beta(x, a, b) {
return (1.0 - Probability.p_beta(x, a, b));
}
/**
* Incomplete beta function.
* @param {number} x
* @param {number} a
* @param {number} b
* @param {string} [tail="lower"] - lower (default) , "upper"
* @returns {number}
*/
static betainc(x, a, b, tail) {
if(tail === "lower") {
return Probability.p_beta(x, a, b);
}
else if(tail === "upper") {
return Probability.q_beta(x, a, b);
}
else if(tail === undefined) {
// 引数を省略した場合
return Probability.betainc(x, a, b, "lower");
}
else {
throw "betainc unsupported argument [" + tail + "]";
}
}
/**
* Probability density function (PDF) of beta distribution.
* @param {number} x
* @param {number} a
* @param {number} b
* @returns {number}
*/
static betapdf(x, a, b) {
// powの計算結果が複素数になる場合は計算を行わない
if (
((x < 0) && isInteger(b - 1)) ||
((1 - x < 0) && isInteger(b - 1))
) {
return 0.0;
}
// 以下の式でも求められるが betapdf(0, 1, 1)で、Log(0)の計算が発生しNaNを返してしまう。実際は1を返すべき。
//return(Math.exp((a - 1) * Math.log(x) + (b - 1) * Math.log(1 - x)) / Probability.beta(a, b));
return (Math.pow(x, a - 1) * Math.pow(1 - x, b - 1) / Probability.beta(a, b));
}
/**
* Cumulative distribution function (CDF) of beta distribution.
* @param {number} x
* @param {number} a
* @param {number} b
* @returns {number}
*/
static betacdf(x, a, b) {
return Probability.betainc(x, a, b);
}
/**
* Inverse function of cumulative distribution function (CDF) of beta distribution.
* @param {number} p
* @param {number} a
* @param {number} b
* @returns {number}
*/
static betainv(p, a, b) {
if((p < 0.0) || (p > 1.0)) {
return Number.NaN;
}
else if((p == 0.0) && (a > 0.0) && (b > 0.0)) {
return 0.0;
}
else if((p == 1.0) && (a > 0.0) && (b > 0.0)) {
return 1.0;
}
const eps = 1.0e-14;
// 初期値を決める
let y;
if(b == 0) {
y = 1.0 - eps;
}
else if(a == 0) {
y = eps;
}
else {
y = a / (a + b);
}
// 単調増加関数なのでニュートン・ラフソン法で解く
// x_n+1 = x_n - f(x) / f'(x)
// ここで f(x) は累積分布関数、f'(x) は確率密度関数
// a = 累積分関数 → f(x) = 累積分関数 - a と置く。
// aの微分は0なので無関係
let delta, y2;
for(let i = 0; i < 100; i++) {
y2 = y - ((Probability.betacdf(y, a, b) - p) / Probability.betapdf(y, a, b));
delta = y2 - y;
if(Math.abs(delta) <= eps) {
break;
}
y = y2;
if(y > 1.0) {
y = 1.0 - eps;
}
else if(y < 0.0) {
y = eps;
}
}
return y;
}
/**
* Factorial function, x!.
* @param {number} n
* @returns {number}
*/
static factorial(n) {
const y = Probability.gamma(n + 1.0);
if(Math.trunc(n) === n) {
return Math.round(y);
}
else {
return y;
}
}
/**
* Binomial coefficient, number of all combinations, nCk.
* @param {number} n
* @param {number} k
* @returns {number} nCk
*/
static nchoosek(n, k) {
// 少ない数字なら以下の計算でよい
// return Math.round(Probability.factorial(n) / (Probability.factorial(n - k) * Probability.factorial(k)));
let x = 1;
const new_k = Math.min(k, n - k);
for(let i = 1; i <= new_k; i++) {
x *= (n + 1 - i) / i;
if(x >= Number.MAX_SAFE_INTEGER) {
return Infinity;
}
}
return x;
}
/**
* Error function.
* @param {number} x
* @returns {number}
*/
static erf(x) {
return (Probability.p_gamma(x * x, 0.5, Math.log(Math.PI) * 0.5) * (x >= 0 ? 1.0 : -1.0));
}
/**
* Complementary error function.
* @param {number} x
* @returns {number}
*/
static erfc(x) {
return 1.0 - Probability.erf(x);
}
/**
* Inverse function of error function.
* @param {number} p
* @returns {number}
*/
static erfinv(p) {
return Probability.erfcinv(1.0 - p);
}
/**
* Inverse function of complementary error function.
* @param {number} p
* @returns {number}
*/
static erfcinv(p) {
return - Probability.norminv(p * 0.5) / Math.sqrt(2);
}
/**
* Probability density function (PDF) of normal distribution.
* @param {number} x
* @param {number} [u=0.0] - Average value.
* @param {number} [s=1.0] - Variance value.
* @returns {number}
*/
static normpdf(x, u, s) {
const u_ = typeof u === "number" ? u : 0.0;
const s_ = typeof s === "number" ? s : 1.0;
let y = 1.0 / Math.sqrt( 2.0 * Math.PI * s_ * s_ );
y *= Math.exp( - (x - u_) * (x - u_) / (2.0 * s_ * s_));
return y;
}
/**
* Cumulative distribution function (CDF) of normal distribution.
* @param {number} x
* @param {number} [u=0.0] - Average value.
* @param {number} [s=1.0] - Variance value.
* @returns {number}
*/
static normcdf(x, u, s) {
const u_ = typeof u === "number" ? u : 0.0;
const s_ = typeof s === "number" ? s : 1.0;
return (1.0 + Probability.erf( (x - u_) / (s_ * Math.sqrt(2.0)) )) / 2.0;
}
/**
* Inverse function of cumulative distribution function (CDF) of normal distribution.
* @param {number} p - Probability.
* @param {number} [u=0.0] - Average value.
* @param {number} [s=1.0] - Variance value.
* @returns {number}
*/
static norminv(p, u, s) {
if((p < 0.0) || (p > 1.0)) {
return Number.NaN;
}
else if(p == 0.0) {
return Number.NEGATIVE_INFINITY;
}
else if(p == 1.0) {
return Number.POSITIVE_INFINITY;
}
const u_ = typeof u === "number" ? u : 0.0;
const s_ = typeof s === "number" ? s : 1.0;
const eps = 1.0e-12;
// 初期値を決める
let y = u_;
// 単調増加関数なのでニュートン・ラフソン法で解く
// x_n+1 = x_n - f(x) / f'(x)
// ここで f(x) は累積分布関数、f'(x) は確率密度関数
// a = 累積分関数 → f(x) = 累積分関数 - a と置く。
// aの微分は0なので無関係
let delta, y2;
for(let i = 0; i < 200; i++) {
y2 = y - ((Probability.normcdf(y, u_, s_) - p) / Probability.normpdf(y, u_, s_));
delta = y2 - y;
if(Math.abs(delta) <= eps) {
break;
}
y = y2;
}
return y;
}
/**
* Probability density function (PDF) of binomial distribution.
* @param {number} x
* @param {number} n
* @param {number} p
* @returns {number}
*/
static binopdf(x, n, p) {
if(!isFinite(p)) {
if(isNaN(p)) {
return NaN;
}
else {
return 0.0;
}
}
return Probability.nchoosek(n, x) * Math.pow(p, x) * Math.pow(1.0 - p, n - x);
}
/**
* Cumulative distribution function (CDF) of binomial distribution.
* @param {number} x
* @param {number} n
* @param {number} p
* @param {string} [tail="lower"] - lower (default) , "upper"
* @returns {number}
*/
static binocdf(x, n, p, tail) {
return Probability.betainc(1.0 - p, n - Math.floor(x), 1 + Math.floor(x), tail);
}
/**
* Inverse function of cumulative distribution function (CDF) of binomial distribution.
* @param {number} y
* @param {number} n
* @param {number} p
* @returns {number}
*/
static binoinv(y, n, p) {
if((y < 0.0) || (1.0 < y) || (p < 0.0) || (1.0 < p)) {
return Number.NaN;
}
else if((y == 0.0) || (p == 0.0)) {
return 0.0;
}
else if(p == 1.0) {
return n;
}
// 初期値を決める
let min = 1;
let max = n;
let middle = 0, old_middle = 0;
// ニュートンラフソン法だと安定しないので
// 挟み込み法(二分法)で求める
for(let i = 0; i < 200; i++) {
middle = Math.round((min + max) / 2);
const Y = Probability.binocdf(middle, n, p);
if(middle === old_middle) {
break;
}
if(Y > y) {
max = middle;
}
else {
min = middle;
}
old_middle = middle;
}
return middle;
}
/**
* Probability density function (PDF) of Poisson distribution.
* @param {number} k
* @param {number} lambda
* @returns {number}
*/
static poisspdf(k, lambda) {
if(!isFinite(k)) {
if(isNaN(k)) {
return Number.NaN;
}
else {
return 0.0;
}
}
// k が大きいとInfになってしまうので以下の処理はだめ
// Math.pow(lambda, k) * Math.exp( - lambda ) / Probability.factorial(k);
// あふれないように調整しながら、地道に計算する。
const inv_e = 1.0 / Math.E;
let x = 1.0;
let lambda_i = 0;
for(let i = 1; i <= k; i++) {
x = x * lambda / i;
if(lambda_i < lambda) {
x *= inv_e;
lambda_i++;
}
}
for(; lambda_i < lambda; lambda_i++) {
x *= inv_e;
}
return x;
}
/**
* Cumulative distribution function (CDF) of Poisson distribution.
* @param {number} k
* @param {number} lambda
* @returns {number}
*/
static poisscdf(k, lambda) {
if(k < 0) {
return 0;
}
return 1.0 - Probability.gammainc(lambda, Math.floor(k + 1));
}
/**
* Inverse function of cumulative distribution function (CDF) of Poisson distribution.
* @param {number} p
* @param {number} lambda
* @returns {number}
*/
static poissinv(p, lambda) {
if((p < 0.0) || (1.0 < p)) {
return Number.NaN;
}
else if(p == 0.0) {
return 0.0;
}
else if(p == 1.0) {
return Number.POSITIVE_INFINITY;
}
// 初期値を決める
let min = 1;
let max = lambda * 20;
let middle = 0, old_middle = 0;
// ニュートンラフソン法だと安定しないので
// 挟み込み法(二分法)で求める
for(let i = 0; i < 200; i++) {
middle = Math.round((min + max) / 2);
const P = Probability.poisscdf(middle, lambda);
if(middle === old_middle) {
break;
}
if(P > p) {
max = middle;
}
else {
min = middle;
}
old_middle = middle;
// console.log(i + " " + min + " " + P + " " + max);
}
return middle;
}
/**
* Probability density function (PDF) of Student's t-distribution.
* @param {number} t - T-value.
* @param {number} v - The degrees of freedom. (DF)
* @returns {number}
*/
static tpdf(t, v) {
let y = 1.0 / (Math.sqrt(v) * Probability.beta(0.5, v * 0.5));
y *= Math.pow( 1 + t * t / v, - (v + 1) * 0.5);
return y;
}
/**
* Cumulative distribution function (CDF) of Student's t-distribution.
* @param {number} t - T-value.
* @param {number} v - The degrees of freedom. (DF)
* @returns {number}
*/
static tcdf(t, v) {
const y = (t * t) / (v + t * t) ;
const p = Probability.betainc( y, 0.5, v * 0.5 ) * (t < 0 ? -1 : 1);
return 0.5 * (1 + p);
}
/**
* Inverse of cumulative distribution function (CDF) of Student's t-distribution.
* @param {number} p - Probability.
* @param {number} v - The degrees of freedom. (DF)
* @returns {number}
*/
static tinv(p, v) {
if((p < 0) || (p > 1)) {
return Number.NaN;
}
if(p == 0) {
return Number.NEGATIVE_INFINITY;
}
else if(p == 1) {
return Number.POSITIVE_INFINITY;
}
else if(p < 0.5) {
const y = Probability.betainv(2.0 * p, 0.5 * v, 0.5);
return - Math.sqrt(v / y - v);
}
else {
const y = Probability.betainv(2.0 * (1.0 - p), 0.5 * v, 0.5);
return Math.sqrt(v / y - v);
}
}
/**
* Cumulative distribution function (CDF) of Student's t-distribution that can specify tail.
* @param {number} t - T-value.
* @param {number} v - The degrees of freedom. (DF)
* @param {number} tails - Tail. (1 = the one-tailed distribution, 2 = the two-tailed distribution.)
* @returns {number}
*/
static tdist(t, v, tails) {
return (1.0 - Probability.tcdf(Math.abs(t), v)) * tails;
}
/**
* Inverse of cumulative distribution function (CDF) of Student's t-distribution in two-sided test.
* @param {number} p - Probability.
* @param {number} v - The degrees of freedom. (DF)
* @returns {number}
*/
static tinv2(p, v) {
return - Probability.tinv( p * 0.5, v);
}
/**
* Probability density function (PDF) of chi-square distribution.
* @param {number} x
* @param {number} k - The degrees of freedom. (DF)
* @returns {number}
*/
static chi2pdf(x, k) {
if(x < 0.0) {
return 0;
}
else if(x === 0.0) {
return 0.5;
}
let y = Math.pow(x, k / 2.0 - 1.0) * Math.exp( - x / 2.0 );
y /= Math.pow(2, k / 2.0) * Probability.gamma( k / 2.0);
return y;
}
/**
* Cumulative distribution function (CDF) of chi-square distribution.
* @param {number} x
* @param {number} k - The degrees of freedom. (DF)
* @returns {number}
*/
static chi2cdf(x, k) {
return Probability.gammainc(x / 2.0, k / 2.0);
}
/**
* Inverse function of cumulative distribution function (CDF) of chi-square distribution.
* @param {number} p - Probability.
* @param {number} k - The degrees of freedom. (DF)
* @returns {number}
*/
static chi2inv(p, k) {
return Probability.gaminv(p, k / 2.0, 2);
}
/**
* Probability density function (PDF) of F-distribution.
* @param {number} x
* @param {number} d1 - The degree of freedom of the molecules.
* @param {number} d2 - The degree of freedom of the denominator
* @returns {number}
*/
static fpdf(x, d1, d2) {
if((d1 < 0) || (d2 < 0)) {
return Number.NaN;
}
else if(x <= 0) {
return 0.0;
}
let y = 1.0;
y *= Math.pow( (d1 * x) / (d1 * x + d2) , d1 / 2.0);
y *= Math.pow( 1.0 - ((d1 * x) / (d1 * x + d2)), d2 / 2.0);
y /= x * Probability.beta(d1 / 2.0, d2 / 2.0);
return y;
}
/**
* Cumulative distribution function (CDF) of F-distribution.
* @param {number} x
* @param {number} d1 - The degree of freedom of the molecules.
* @param {number} d2 - The degree of freedom of the denominator
* @returns {number}
*/
static fcdf(x, d1, d2) {
return Probability.betacdf( d1 * x / (d1 * x + d2), d1 / 2.0, d2 / 2.0 );
}
/**
* Inverse function of cumulative distribution function (CDF) of F-distribution.
* @param {number} p - Probability.
* @param {number} d1 - The degree of freedom of the molecules.
* @param {number} d2 - The degree of freedom of the denominator
* @returns {number}
*/
static finv(p, d1, d2) {
return (1.0 / Probability.betainv( 1.0 - p, d2 / 2.0, d1 / 2.0 ) - 1.0) * d2 / d1;
}
}