Matrix
Complex matrix class. (immutable)
Static Method Summary
Static Public Methods | ||
public static |
arange(start_or_stop: KMatrixInputData, stop: KMatrixInputData, step: KMatrixInputData): Matrix Create row vector with specified initial value, step value, end condition. |
|
public static |
create(number: KMatrixInputData): Matrix Create an entity object of this class. |
|
public static |
createMatrixDoEachCalculation(eachfunc: function(prm1: number, prm2: number): ?Object, dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix Create Matrix with specified initialization for each element in matrix. |
|
public static |
eye(dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix Return identity matrix. |
|
public static |
hamming(size: KMatrixInputData, periodic: string | number): Matrix Hamming window. |
|
public static |
hann(size: KMatrixInputData, periodic: string | number): Matrix Hann (Hanning) window. |
|
public static |
memset(number: KMatrixInputData, dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix Creates a matrix composed of the specified number. |
|
public static |
ones(dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix Create a matrix of all ones. |
|
public static |
rand(dimension: KMatrixInputData, column_length: KMatrixInputData, random: Random): Matrix Generate a matrix composed of random values [0, 1) with uniform random numbers. |
|
public static |
randn(dimension: KMatrixInputData, column_length: KMatrixInputData, random: Random): Matrix Generate a matrix composed of random values with normal distribution. |
|
public static |
valueOf(number: KMatrixInputData): Matrix Convert number to Matrix type. |
|
public static |
Create window function for signal processing. |
|
public static |
zeros(dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix Create zero matrix. |
Constructor Summary
Public Constructor | ||
public |
constructor(number: KMatrixInputData) Create a complex matrix. |
Method Summary
Public Methods | ||
public |
Hermitian transpose. |
|
public |
Absolute value. |
|
public |
Arc cosine function. |
|
public |
Inverse hyperbolic cosine function. |
|
public |
Inverse cotangent function. |
|
public |
Inverse hyperbolic cotangent function. |
|
public |
Inverse cosecant function. |
|
public |
Inverse hyperbolic cosecant function. |
|
public |
add(number: KMatrixInputData): Matrix Add. |
|
public |
and(number: KMatrixInputData): Matrix Logical AND. |
|
public |
The argument of each element of matrix. |
|
public |
Reverse secant function. |
|
public |
Inverse hyperbolic secant function. |
|
public |
Arc sine function. |
|
public |
Inverse hyperbolic sine function. |
|
public |
Atan (arc tangent) function. |
|
public |
atan2(number: KMatrixInputData): Matrix Atan (arc tangent) function. |
|
public |
Inverse hyperbolic tangent function. |
|
public |
beta(y: KMatrixInputData): Matrix Beta function. |
|
public |
betacdf(a: KMatrixInputData, b: KMatrixInputData): Matrix Cumulative distribution function (CDF) of beta distribution. |
|
public |
betainc(a: KMatrixInputData, b: KMatrixInputData, tail: string): Matrix Incomplete beta function. |
|
public |
betainv(a: KMatrixInputData, b: KMatrixInputData): Matrix Inverse function of cumulative distribution function (CDF) of beta distribution. |
|
public |
betapdf(a: KMatrixInputData, b: KMatrixInputData): Matrix Probability density function (PDF) of beta distribution. |
|
public |
binocdf(n: KMatrixInputData, p: KMatrixInputData, tail: string): Matrix Cumulative distribution function (CDF) of binomial distribution. |
|
public |
binoinv(n: KMatrixInputData, p: KMatrixInputData): Matrix Inverse function of cumulative distribution function (CDF) of binomial distribution. |
|
public |
binopdf(n: KMatrixInputData, p: KMatrixInputData): Matrix Probability density function (PDF) of binomial distribution. |
|
public |
Boolean value of the first element of the matrix. |
|
public |
Cube root. |
|
public |
Ceil. |
|
public |
Cumulative distribution function (CDF) of chi-square distribution. |
|
public |
Inverse function of cumulative distribution function (CDF) of chi-square distribution. |
|
public |
Probability density function (PDF) of chi-square distribution. |
|
public |
circshift(shift_size: KMatrixInputData, type: KMatrixSettings): Matrix Circular shift. |
|
public |
clip(min: KMatrixInputData, max: KMatrixInputData): Matrix Clip each element of matrix to specified range. |
|
public |
Deep copy. |
|
public |
cloneMatrixDoEachCalculation(eachfunc: function(prm1: Complex, prm2: number, prm3: number): ?Object): Matrix Perform the same process on all elements in the matrix. |
|
public |
compareTo(number: KMatrixInputData, tolerance: KMatrixInputData): number Compare values. |
|
public |
compareToMatrix(number: KMatrixInputData, tolerance: KMatrixInputData): Matrix Compare values. |
|
public |
concatBottom(bottom_matrix: KMatrixInputData): Matrix Combine matrix to the bottom of this matrix. |
|
public |
concatRight(left_matrix: KMatrixInputData): Matrix Combine matrix to the right of this matrix. |
|
public |
cond(p: KMatrixInputData): number Condition number of the matrix |
|
public |
Complex conjugate matrix. |
|
public |
conv(number: KMatrixInputData): Matrix Convolution integral, Polynomial multiplication. |
|
public |
corrcoef(y_or_type: KMatrixSettings | KMatrixInputData, type: KMatrixSettings): Matrix Correlation matrix or Correlation coefficient. |
|
public |
Cosine function. |
|
public |
Hyperbolic cosine function. |
|
public |
Cotangent function. |
|
public |
Hyperbolic cotangent function. |
|
public |
cov(y_or_type: KMatrixSettings | KMatrixInputData, type: KMatrixSettings): Matrix Covariance matrix or Covariance value. |
|
public |
Cosecant function. |
|
public |
Hyperbolic cosecant function. |
|
public |
ctranspose(): Matrix Hermitian transpose. |
|
public |
dct(type: KMatrixSettings): Matrix Discrete cosine transform (DCT-II, DCT). |
|
public |
Discrete two-dimensional cosine transform (2D DCT). |
|
public |
deleteColumn(delete_column_index: KMatrixInputData): Matrix Remove the column in this matrix. |
|
public |
deleteRow(delete_row_index: KMatrixInputData): Matrix Remove the row in this matrix. |
|
public |
Determinant. |
|
public |
If matrix, generate diagonal column vector. |
|
public |
div(number: KMatrixInputData): Matrix Divide. |
|
public |
divide(number: KMatrixInputData): Matrix Divide. |
|
public |
dotdiv(number: KMatrixInputData): Matrix Division for each element of matrix. |
|
public |
Inverse of each element of matrix. |
|
public |
dotmul(number: KMatrixInputData): Matrix Multiplication for each element of matrix. |
|
public |
dotpow(number: KMatrixInputData): Matrix Power function for each element of the matrix. |
|
public |
Real value of first element of the matrix. |
|
public |
eachVector(array_function: function(prm1: Array<Complex>): Array<Complex>, dimension: string | number): Matrix Treat the rows and columns of the matrix as vectors and perform the same processing. |
|
public |
Treat the columns of the matrix as vectors and execute the same process. |
|
public |
Treat the rows and columns of the matrix as vectors and perform the same processing. |
|
public |
Treat the columns of the matrix as vectors and execute the same process. |
|
public |
Treat the rows of the matrix as vectors and execute the same process. |
|
public |
Eigendecomposition of symmetric matrix. |
|
public |
equals(number: KMatrixInputData, tolerance: KMatrixInputData): boolean Equals. |
|
public |
Error function. |
|
public |
Complementary error function. |
|
public |
Inverse function of Complementary error function. |
|
public |
Inverse function of Error function. |
|
public |
exchangeColumn(exchange_column_index1: KMatrixInputData, exchange_column_index2: KMatrixInputData): Matrix Swap columns in the matrix. |
|
public |
exchangeRow(exchange_row_index1: KMatrixInputData, exchange_row_index2: KMatrixInputData): Matrix Swap rows in the matrix. |
|
public |
Exponential function. |
|
public |
e^x - 1 |
|
public |
Factorial function, x!. |
|
public |
fcdf(d1: KMatrixInputData, d2: KMatrixInputData): Matrix Cumulative distribution function (CDF) of F-distribution. |
|
public |
fft(type: KMatrixSettings): Matrix Discrete Fourier transform (DFT). |
|
public |
Discrete two-dimensional Fourier transform (2D DFT). |
|
public |
fftshift(type: KMatrixSettings): Matrix FFT shift. |
|
public |
finv(d1: KMatrixInputData, d2: KMatrixInputData): Matrix Inverse function of cumulative distribution function (CDF) of F-distribution. |
|
public |
To integer rounded down to the nearest. |
|
public |
flip(type: KMatrixSettings): Matrix Flip this matrix. |
|
public |
Flip this matrix left and right. |
|
public |
Flip this matrix up and down. |
|
public |
Floor. |
|
public |
fpdf(d1: KMatrixInputData, d2: KMatrixInputData): Matrix Probability density function (PDF) of F-distribution. |
|
public |
Fraction. |
|
public |
gamcdf(k: KMatrixInputData, s: KMatrixInputData): Matrix Cumulative distribution function (CDF) of gamma distribution. |
|
public |
gaminv(k: KMatrixInputData, s: KMatrixInputData): Matrix Inverse function of cumulative distribution function (CDF) of gamma distribution. |
|
public |
Gamma function. |
|
public |
gammainc(a: KMatrixInputData, tail: string): Matrix Incomplete gamma function. |
|
public |
Log-gamma function. |
|
public |
gampdf(k: KMatrixInputData, s: KMatrixInputData): Matrix Probability density function (PDF) of the gamma distribution. |
|
public |
geomean(type: KMatrixSettings): Matrix Geometric mean. |
|
public |
getComplex(row_or_pos: KMatrixInputData, col: KMatrixInputData): Complex Returns the specified element in the matrix. |
|
public |
Complex array of complex numbers of each element of the matrix. |
|
public |
getMatrix(row: KMatrixInputData, col: KMatrixInputData, isUpOffset: boolean): Matrix Extract the specified part of the matrix. |
|
public |
Array of real parts of elements in matrix. |
|
public |
Number of rows in matrix. |
|
public |
idct(type: KMatrixSettings): Matrix Inverse discrete cosine transform (DCT-III, IDCT). |
|
public |
Inverse discrete two-dimensional cosine transform (2D IDCT). |
|
public |
ifft(type: KMatrixSettings): Matrix Inverse discrete Fourier transform (IDFT). |
|
public |
Inverse discrete two-dimensional Fourier transform (2D IDFT). |
|
public |
Imaginary part of each element of the matrix. |
|
public |
Index sort. |
|
public |
inner(number: KMatrixInputData, dimension: KMatrixInputData): Matrix Inner product/Dot product. |
|
public |
Integer value of the first element of the matrix. |
|
public |
Inverse matrix of this matrix. |
|
public |
Return true if the matrix is column vector. |
|
public |
isComplex(tolerance: KMatrixInputData): boolean Return true if the matrix is complex matrix. |
|
public |
isComplexInteger(tolerance: KMatrixInputData): boolean Returns true if the vallue is complex integer (including normal integer). |
|
public |
isDiagonal(tolerance: KMatrixInputData): boolean Return true if the matrix is diagonal matrix. |
|
public |
Return true if the value is finite number. |
|
public |
isHermitian(tolerance: KMatrixInputData): boolean Return true if the matrix is hermitian matrix. |
|
public |
isIdentity(tolerance: KMatrixInputData): boolean Return true if the matrix is identity matrix. |
|
public |
this === Infinity or -Infinity
|
|
public |
isInteger(tolerance: KMatrixInputData): boolean Return true if the value is integer. |
|
public |
Return true if the value is not scalar. |
|
public |
this === NaN
|
|
public |
this < 0
|
|
public |
this === -Infinity
|
|
public |
this >= 0
|
|
public |
isOne(tolerance: KMatrixInputData): boolean this === 1
|
|
public |
isOrthogonal(tolerance: KMatrixInputData): boolean Return true if the matrix is orthogonal matrix. |
|
public |
isPermutation(tolerance: KMatrixInputData): boolean Return true if the matrix is permutation matrix. |
|
public |
this > 0
|
|
public |
this === Infinity
|
|
public |
isReal(tolerance: KMatrixInputData): boolean Return true if the matrix is real matrix. |
|
public |
isRegular(tolerance: KMatrixInputData): boolean Return true if the matrix is regular matrix. |
|
public |
Return true if the matrix is row vector. |
|
public |
Return true if the matrix is scalar. |
|
public |
Return true if the matrix is square matrix. |
|
public |
isSymmetric(tolerance: KMatrixInputData): boolean Return true if the matrix is symmetric matrix. |
|
public |
isTriangleLower(tolerance: KMatrixInputData): boolean Return true if the matrix is lower triangular matrix. |
|
public |
isTriangleUpper(tolerance: KMatrixInputData): boolean Return true if the matrix is upper triangular matrix. |
|
public |
isTridiagonal(tolerance: KMatrixInputData): boolean Return true if the matrix is tridiagonal matrix. |
|
public |
isUnitary(tolerance: KMatrixInputData): boolean Return true if the matrix is unitary matrix. |
|
public |
Return true if the matrix is vector. |
|
public |
isZero(tolerance: KMatrixInputData): boolean this === 0
|
|
public |
isZeros(tolerance: KMatrixInputData): boolean Return true if the matrix is zero matrix. |
|
public |
Maximum size of rows or columns in the matrix. |
|
public |
linsolve(number: KMatrixInputData): Matrix Solving a system of linear equations to be Ax = B |
|
public |
Logarithmic function. |
|
public |
log_10(x) |
|
public |
ln(1 + x) |
|
public |
log_2(x) |
|
public |
Logit function. |
|
public |
LU decomposition. |
|
public |
LUP decomposition. |
|
public |
mad(algorithm: string | ?number, type: KMatrixSettings): Matrix Mean absolute deviation. |
|
public |
max(type: KMatrixSettings): Matrix Maximum number. |
|
public |
mean(type: KMatrixSettings): Matrix Arithmetic average. |
|
public |
median(type: KMatrixSettings): Matrix Median. |
|
public |
min(type: KMatrixSettings): Matrix Minimum number. |
|
public |
mod(number: KMatrixInputData): Matrix Modulo, positive remainder of division for each element of matrix. |
|
public |
mode(type: KMatrixSettings): Matrix Mode. |
|
public |
moment(nth_order: number, type: KMatrixSettings): Matrix Moment. |
|
public |
mul(number: KMatrixInputData): Matrix Multiply. |
|
public |
multiply(number: KMatrixInputData): Matrix Multiply. |
|
public |
Binomial coefficient, number of all combinations, nCk. |
|
public |
ndiv(number: KMatrixInputData): Matrix this method was deprecated. use the dotdiv.
Division for each element of matrix. |
|
public |
this * -1 |
|
public |
this method was deprecated. use the dotinv.
Inverse of each element of matrix. |
|
public |
nmul(number: KMatrixInputData): Matrix this method was deprecated. use the dotmul.
Multiplication for each element of matrix. |
|
public |
norm(p: KMatrixInputData): number p-norm. |
|
public |
1-norm. |
|
public |
2-norm. |
|
public |
normcdf(u: KMatrixInputData, s: KMatrixInputData): Matrix Cumulative distribution function (CDF) of normal distribution. |
|
public |
norminv(u: KMatrixInputData, s: KMatrixInputData): Matrix Inverse function of cumulative distribution function (CDF) of normal distribution. |
|
public |
normpdf(u: KMatrixInputData, s: KMatrixInputData): Matrix Probability density function (PDF) of normal distribution. |
|
public |
Logical Not. |
|
public |
npow(number: KMatrixInputData): Matrix this method was deprecated. use the dotpow.
Power function for each element of the matrix. |
|
public |
or(number: KMatrixInputData): Matrix Logical OR. |
|
public |
Pseudo-inverse matrix. |
|
public |
poisscdf(lambda: KMatrixInputData): Matrix Cumulative distribution function (CDF) of Poisson distribution. |
|
public |
poissinv(lambda: KMatrixInputData): Matrix Inverse function of cumulative distribution function (CDF) of Poisson distribution. |
|
public |
poisspdf(lambda: KMatrixInputData): Matrix Probability density function (PDF) of Poisson distribution. |
|
public |
pow(number: KMatrixInputData): Matrix Power function. |
|
public |
powerfft(type: KMatrixSettings): Matrix Power spectral density. |
|
public |
prod(type: KMatrixSettings): Matrix Product of array elements. |
|
public |
QR decomposition. |
|
public |
rank(tolerance: KMatrixInputData): number Rank. |
|
public |
Inverse condition number. |
|
public |
Real part of each element. |
|
public |
rem(number: KMatrixInputData): Matrix Modulo, positive remainder of division for each element of matrix. |
|
public |
remainder(number: KMatrixInputData): Matrix Remainder of division. |
|
public |
reshape(row_length: KMatrixInputData, column_length: KMatrixInputData): Matrix Change the shape of the matrix. |
|
public |
resize(row_length: KMatrixInputData, column_length: KMatrixInputData): Matrix Change the size of the matrix. |
|
public |
roll(shift_size: KMatrixInputData, type: KMatrixSettings): Matrix Circular shift. |
|
public |
rot90(rot_90_count: KMatrixInputData): Matrix Rotate matrix 90 degrees clockwise. |
|
public |
Rounding to the nearest integer. |
|
public |
Reciprocal square root. |
|
public |
First element of this matrix. |
|
public |
Multiply a multiple of ten. |
|
public |
Secant function. |
|
public |
Hyperbolic secant function. |
|
public |
setMatrix(row: KMatrixInputData, col: KMatrixInputData, replace: KMatrixInputData, isUpOffset: boolean): Matrix Change specified element in matrix. |
|
public |
shift(n: KMatrixInputData): Matrix this << n
|
|
public |
The positive or negative signs of each element of the matrix. |
|
public |
The positive or negative sign of this number. |
|
public |
Sine function. |
|
public |
Normalized sinc function. |
|
public |
Hyperbolic sine function. |
|
public |
Number of rows and columns of matrix. |
|
public |
skewness(type: KMatrixSettings): Matrix Skewness. |
|
public |
sort(order: string, type: KMatrixSettings): Matrix Sort. |
|
public |
Square root. |
|
public |
Square. |
|
public |
standardization(type: KMatrixSettings): Matrix The samples are standardize to a mean value of 0, standard deviation of 1. |
|
public |
std(type: KMatrixSettings): Matrix Standard deviation. |
|
public |
sub(number: KMatrixInputData): Matrix Subtract. |
|
public |
subtract(number: KMatrixInputData): Matrix Subtract. |
|
public |
sum(type: KMatrixSettings): Matrix Sum. |
|
public |
Singular Value Decomposition (SVD). |
|
public |
Tangent function. |
|
public |
Hyperbolic tangent function. |
|
public |
tcdf(v: KMatrixInputData): Matrix Cumulative distribution function (CDF) of Student's t-distribution.
|
|
public |
tdist(v: KMatrixInputData, tails: KMatrixInputData): Matrix Cumulative distribution function (CDF) of Student's t-distribution that can specify tail.
|
|
public |
testComplex(tolerance: KMatrixInputData): Matrix Test if each element of the matrix is complex. |
|
public |
testComplexInteger(tolerance: KMatrixInputData): Matrix Test if each element of the matrix is complex integer. |
|
public |
testFinite(): Matrix Test if each element of the matrix is finite. |
|
public |
Test if each element of the matrix is infinite. |
|
public |
testInteger(tolerance: KMatrixInputData): Matrix Test if each element of the matrix is integer. |
|
public |
Test if each element of the matrix is NaN. |
|
public |
real(this) < 0
|
|
public |
Test if each element of the matrix is negative infinite. |
|
public |
real(this) >= 0
|
|
public |
testOne(tolerance: KMatrixInputData): Matrix real(this) === 1
|
|
public |
real(this) > 0
|
|
public |
Test if each element of the matrix is positive infinite. |
|
public |
testReal(tolerance: KMatrixInputData): Matrix Test if each element of the matrix is real. |
|
public |
testZero(tolerance: KMatrixInputData): Matrix real(this) === 0
|
|
public |
tinv(v: KMatrixInputData): Matrix Inverse of cumulative distribution function (CDF) of Student's t-distribution.
|
|
public |
tinv2(v: KMatrixInputData): Matrix Inverse of cumulative distribution function (CDF) of Student's t-distribution in two-sided test.
|
|
public |
return Complex. |
|
public |
Convert to JSON. |
|
public |
return Matrix. |
|
public |
Convert to string in one line. |
|
public |
Convert to string. |
|
public |
tpdf(v: KMatrixInputData): Matrix Probability density function (PDF) of Student's t-distribution.
|
|
public |
Trace of a matrix. |
|
public |
Transpose a matrix. |
|
public |
tridiagonalize(): {P: Matrix, H: Matrix} Tridiagonalization of symmetric matrix. |
|
public |
To integer rounded down to the nearest. |
|
public |
variance(type: KMatrixSettings): Matrix Variance. |
|
public |
Number of columns in the matrix. |
|
public |
xcorr(number: KMatrixInputData): Matrix ACF(Autocorrelation function), cros-correlation function. |
|
public |
xor(number: KMatrixInputData): Matrix Logical Exclusive-OR. |
Private Methods | ||
private |
Delete cache. |
|
private |
_concatBottom(bottom_matrix: KMatrixInputData): Matrix Combine matrix to the bottom of this matrix. |
|
private |
_deleteColumn(delete_column_index: KMatrixInputData): Matrix Remove the column in this matrix. |
|
private |
_deleteRow(delete_row_index: KMatrixInputData): Matrix Remove the row in this matrix. |
|
private |
_rot90(rot_90_count: KMatrixInputData): Matrix Rotate matrix 90 degrees clockwise. |
|
private |
|
Static Public Methods
public static arange(start_or_stop: KMatrixInputData, stop: KMatrixInputData, step: KMatrixInputData): Matrix source
Create row vector with specified initial value, step value, end condition.
Params:
Name | Type | Attribute | Description |
start_or_stop | KMatrixInputData | ||
stop | KMatrixInputData |
|
|
step | KMatrixInputData |
|
public static create(number: KMatrixInputData): Matrix source
Create an entity object of this class.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public static createMatrixDoEachCalculation(eachfunc: function(prm1: number, prm2: number): ?Object, dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix source
Create Matrix with specified initialization for each element in matrix.
Params:
Name | Type | Attribute | Description |
eachfunc | function(prm1: number, prm2: number): ?Object | Function(row, col) |
|
dimension | KMatrixInputData | Number of dimensions or rows. |
|
column_length | KMatrixInputData |
|
Number of columns. |
public static eye(dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix source
Return identity matrix.
Params:
Name | Type | Attribute | Description |
dimension | KMatrixInputData | Number of dimensions or rows. |
|
column_length | KMatrixInputData |
|
Number of columns. |
public static hamming(size: KMatrixInputData, periodic: string | number): Matrix source
Hamming window.
Params:
Name | Type | Attribute | Description |
size | KMatrixInputData | Window length |
|
periodic | string | number |
|
0/"symmetric" (default) , 1/"periodic" |
public static hann(size: KMatrixInputData, periodic: string | number): Matrix source
Hann (Hanning) window.
Params:
Name | Type | Attribute | Description |
size | KMatrixInputData | Window length |
|
periodic | string | number |
|
0/"symmetric" (default) , 1/"periodic" |
public static memset(number: KMatrixInputData, dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix source
Creates a matrix composed of the specified number.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData | Value after initialization. |
|
dimension | KMatrixInputData | Number of dimensions or rows. |
|
column_length | KMatrixInputData |
|
Number of columns. |
public static ones(dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix source
Create a matrix of all ones.
Params:
Name | Type | Attribute | Description |
dimension | KMatrixInputData | Number of dimensions or rows. |
|
column_length | KMatrixInputData |
|
Number of columns. |
public static rand(dimension: KMatrixInputData, column_length: KMatrixInputData, random: Random): Matrix source
Generate a matrix composed of random values [0, 1) with uniform random numbers.
Params:
Name | Type | Attribute | Description |
dimension | KMatrixInputData | Number of dimensions or rows. |
|
column_length | KMatrixInputData |
|
Number of columns. |
random | Random |
|
Class for creating random numbers. |
public static randn(dimension: KMatrixInputData, column_length: KMatrixInputData, random: Random): Matrix source
Generate a matrix composed of random values with normal distribution.
Params:
Name | Type | Attribute | Description |
dimension | KMatrixInputData | Number of dimensions or rows. |
|
column_length | KMatrixInputData |
|
Number of columns. |
random | Random |
|
Class for creating random numbers. |
public static valueOf(number: KMatrixInputData): Matrix source
Convert number to Matrix type.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public static window(name: string, size: KMatrixInputData, periodic: string | number): Matrix source
Create window function for signal processing. The following window functions are available.
- "rectangle": Rectangular window
- "hann": Hann/Hanning window.
- "hamming": Hamming window.
- "blackman": Blackman window.
- "blackmanharris": Blackman-Harris window.
- "blackmannuttall": Blackman-Nuttall window.
- "flattop": Flat top window.
- "sin", Half cycle sine window.
- "vorbis", Vorbis window.
Params:
Name | Type | Attribute | Description |
name | string | Window function name. |
|
size | KMatrixInputData | Window length |
|
periodic | string | number |
|
0/"symmetric" (default) , 1/"periodic" |
public static zeros(dimension: KMatrixInputData, column_length: KMatrixInputData): Matrix source
Create zero matrix.
Params:
Name | Type | Attribute | Description |
dimension | KMatrixInputData | Number of dimensions or rows. |
|
column_length | KMatrixInputData |
|
Number of columns. |
Public Constructors
public constructor(number: KMatrixInputData) source
Create a complex matrix. Initialization can be performed as follows.
- 10, "10", "3 + 4j", "[ 1 ]", "[1, 2, 3]", "[1 2 3]", [1, 2, 3],
- [[1, 2], [3, 4]], "[1 2; 3 4]", "[1+2i 3+4i]",
- "[1:10]", "[1:2:3]" (MATLAB / Octave / Scilab compatible).
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData | Complex matrix. See how to use the function. |
Public Methods
public add(number: KMatrixInputData): Matrix source
Add.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public and(number: KMatrixInputData): Matrix source
Logical AND.
- Calculated as an integer.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public atan2(number: KMatrixInputData): Matrix source
Atan (arc tangent) function.
- Return the values of [-PI, PI].
- Supports only real numbers.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData | X |
public beta(y: KMatrixInputData): Matrix source
Beta function.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
y | KMatrixInputData |
public betacdf(a: KMatrixInputData, b: KMatrixInputData): Matrix source
Cumulative distribution function (CDF) of beta distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
a | KMatrixInputData | ||
b | KMatrixInputData |
public betainc(a: KMatrixInputData, b: KMatrixInputData, tail: string): Matrix source
Incomplete beta function.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
a | KMatrixInputData | ||
b | KMatrixInputData | ||
tail | string |
|
lower (default) , "upper" |
public betainv(a: KMatrixInputData, b: KMatrixInputData): Matrix source
Inverse function of cumulative distribution function (CDF) of beta distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
a | KMatrixInputData | ||
b | KMatrixInputData |
public betapdf(a: KMatrixInputData, b: KMatrixInputData): Matrix source
Probability density function (PDF) of beta distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
a | KMatrixInputData | ||
b | KMatrixInputData |
public binocdf(n: KMatrixInputData, p: KMatrixInputData, tail: string): Matrix source
Cumulative distribution function (CDF) of binomial distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
n | KMatrixInputData | ||
p | KMatrixInputData | ||
tail | string |
|
lower (default) , "upper" |
public binoinv(n: KMatrixInputData, p: KMatrixInputData): Matrix source
Inverse function of cumulative distribution function (CDF) of binomial distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
n | KMatrixInputData | ||
p | KMatrixInputData |
public binopdf(n: KMatrixInputData, p: KMatrixInputData): Matrix source
Probability density function (PDF) of binomial distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
n | KMatrixInputData | ||
p | KMatrixInputData |
public chi2cdf(k: KMatrixInputData): Matrix source
Cumulative distribution function (CDF) of chi-square distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
k | KMatrixInputData | The degrees of freedom. (DF) |
public chi2inv(k: KMatrixInputData): Matrix source
Inverse function of cumulative distribution function (CDF) of chi-square distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
k | KMatrixInputData | The degrees of freedom. (DF) |
public chi2pdf(k: KMatrixInputData): Matrix source
Probability density function (PDF) of chi-square distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
k | KMatrixInputData | The degrees of freedom. (DF) |
public circshift(shift_size: KMatrixInputData, type: KMatrixSettings): Matrix source
Circular shift.
Params:
Name | Type | Attribute | Description |
shift_size | KMatrixInputData | ||
type | KMatrixSettings |
|
public clip(min: KMatrixInputData, max: KMatrixInputData): Matrix source
Clip each element of matrix to specified range.
Params:
Name | Type | Attribute | Description |
min | KMatrixInputData | ||
max | KMatrixInputData |
public cloneMatrixDoEachCalculation(eachfunc: function(prm1: Complex, prm2: number, prm3: number): ?Object): Matrix source
Perform the same process on all elements in the matrix.
public compareTo(number: KMatrixInputData, tolerance: KMatrixInputData): number source
Compare values.
- Use
compareToMatrix
if you want to compare matrices.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData | ||
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public compareToMatrix(number: KMatrixInputData, tolerance: KMatrixInputData): Matrix source
Compare values.
- Use
compareTo
if you want to compare scalar values.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData | ||
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public concatBottom(bottom_matrix: KMatrixInputData): Matrix source
Combine matrix to the bottom of this matrix.
Params:
Name | Type | Attribute | Description |
bottom_matrix | KMatrixInputData | Matrix to combine. |
public concatRight(left_matrix: KMatrixInputData): Matrix source
Combine matrix to the right of this matrix.
Params:
Name | Type | Attribute | Description |
left_matrix | KMatrixInputData | Matrix to combine. |
public cond(p: KMatrixInputData): number source
Condition number of the matrix
Params:
Name | Type | Attribute | Description |
p | KMatrixInputData |
|
public conv(number: KMatrixInputData): Matrix source
Convolution integral, Polynomial multiplication.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public corrcoef(y_or_type: KMatrixSettings | KMatrixInputData, type: KMatrixSettings): Matrix source
Correlation matrix or Correlation coefficient.
- Get a correlation matrix from 1 matrix.
- Get a correlation coefficient from 2 vectors.
Params:
Name | Type | Attribute | Description |
y_or_type | KMatrixSettings | KMatrixInputData |
|
|
type | KMatrixSettings |
|
public cov(y_or_type: KMatrixSettings | KMatrixInputData, type: KMatrixSettings): Matrix source
Covariance matrix or Covariance value.
- Get a variance-covariance matrix from 1 matrix.
- Get a covariance from 2 vectors.
Params:
Name | Type | Attribute | Description |
y_or_type | KMatrixSettings | KMatrixInputData |
|
|
type | KMatrixSettings |
|
public dct(type: KMatrixSettings): Matrix source
Discrete cosine transform (DCT-II, DCT).
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public deleteColumn(delete_column_index: KMatrixInputData): Matrix source
Remove the column in this matrix.
Params:
Name | Type | Attribute | Description |
delete_column_index | KMatrixInputData | Number of column of matrix to delete. |
public deleteRow(delete_row_index: KMatrixInputData): Matrix source
Remove the row in this matrix.
Params:
Name | Type | Attribute | Description |
delete_row_index | KMatrixInputData | Number of row of matrix to delete. |
public diag(): Matrix source
If matrix, generate diagonal column vector. If vector, generate a matrix with diagonal elements.
public div(number: KMatrixInputData): Matrix source
Divide.
- Use
dotdiv
if you want to usediv
for each element.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public divide(number: KMatrixInputData): Matrix source
Divide.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public dotdiv(number: KMatrixInputData): Matrix source
Division for each element of matrix.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public dotmul(number: KMatrixInputData): Matrix source
Multiplication for each element of matrix.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public dotpow(number: KMatrixInputData): Matrix source
Power function for each element of the matrix.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public eachVector(array_function: function(prm1: Array<Complex>): Array<Complex>, dimension: string | number): Matrix source
Treat the rows and columns of the matrix as vectors and perform the same processing. The arguments of the method can switch the direction of the matrix to be executed.
public eachVectorAuto(array_function: function(prm1: Array<Complex>): Array<Complex>): Matrix source
Treat the columns of the matrix as vectors and execute the same process.
- If the matrix is a row vector, it performs the same processing for the row vector.
public eachVectorBoth(array_function: function(prm1: Array<Complex>): Array<Complex>): Matrix source
Treat the rows and columns of the matrix as vectors and perform the same processing.
- First run the same process for the row.
- Finally perform the same processing for the column.
public eachVectorColumn(array_function: function(prm1: Array<Complex>): Array<Complex>): Matrix source
Treat the columns of the matrix as vectors and execute the same process.
public eachVectorRow(array_function: function(prm1: Array<Complex>): Array<Complex>): Matrix source
Treat the rows of the matrix as vectors and execute the same process.
public eig(): {V: Matrix, D: Matrix} source
Eigendecomposition of symmetric matrix.
- Don't support complex numbers.
- VDV'=A.
- V is orthonormal matrix. and columns of V are the right eigenvectors.
- D is a matrix containing the eigenvalues on the diagonal component.
public equals(number: KMatrixInputData, tolerance: KMatrixInputData): boolean source
Equals.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData | ||
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public erfcinv(): Matrix source
Inverse function of Complementary error function.
- Calculate from real values.
public exchangeColumn(exchange_column_index1: KMatrixInputData, exchange_column_index2: KMatrixInputData): Matrix source
Swap columns in the matrix.
Params:
Name | Type | Attribute | Description |
exchange_column_index1 | KMatrixInputData | Number 1 of column of matrix to exchange. |
|
exchange_column_index2 | KMatrixInputData | Number 2 of column of matrix to exchange. |
public exchangeRow(exchange_row_index1: KMatrixInputData, exchange_row_index2: KMatrixInputData): Matrix source
Swap rows in the matrix.
Params:
Name | Type | Attribute | Description |
exchange_row_index1 | KMatrixInputData | Number 1 of row of matrix to exchange. |
|
exchange_row_index2 | KMatrixInputData | Number 2 of row of matrix to exchange. |
public fcdf(d1: KMatrixInputData, d2: KMatrixInputData): Matrix source
Cumulative distribution function (CDF) of F-distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
d1 | KMatrixInputData | The degree of freedom of the molecules. |
|
d2 | KMatrixInputData | The degree of freedom of the denominator |
public fft(type: KMatrixSettings): Matrix source
Discrete Fourier transform (DFT).
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public fftshift(type: KMatrixSettings): Matrix source
FFT shift. Circular shift beginning at the center of the signal.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public finv(d1: KMatrixInputData, d2: KMatrixInputData): Matrix source
Inverse function of cumulative distribution function (CDF) of F-distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
d1 | KMatrixInputData | The degree of freedom of the molecules. |
|
d2 | KMatrixInputData | The degree of freedom of the denominator |
public flip(type: KMatrixSettings): Matrix source
Flip this matrix.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public fpdf(d1: KMatrixInputData, d2: KMatrixInputData): Matrix source
Probability density function (PDF) of F-distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
d1 | KMatrixInputData | The degree of freedom of the molecules. |
|
d2 | KMatrixInputData | The degree of freedom of the denominator |
public gamcdf(k: KMatrixInputData, s: KMatrixInputData): Matrix source
Cumulative distribution function (CDF) of gamma distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
k | KMatrixInputData | Shape parameter. |
|
s | KMatrixInputData | Scale parameter. |
public gaminv(k: KMatrixInputData, s: KMatrixInputData): Matrix source
Inverse function of cumulative distribution function (CDF) of gamma distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
k | KMatrixInputData | Shape parameter. |
|
s | KMatrixInputData | Scale parameter. |
public gammainc(a: KMatrixInputData, tail: string): Matrix source
Incomplete gamma function.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
a | KMatrixInputData | ||
tail | string |
|
lower (default) , "upper" |
public gampdf(k: KMatrixInputData, s: KMatrixInputData): Matrix source
Probability density function (PDF) of the gamma distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
k | KMatrixInputData | Shape parameter. |
|
s | KMatrixInputData | Scale parameter. |
public geomean(type: KMatrixSettings): Matrix source
Geometric mean.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public getComplex(row_or_pos: KMatrixInputData, col: KMatrixInputData): Complex source
Returns the specified element in the matrix. Each element of the matrix is composed of complex numbers.
Params:
Name | Type | Attribute | Description |
row_or_pos | KMatrixInputData | If this is a matrix, the row number. If this is a vector, the address. |
|
col | KMatrixInputData |
|
If this is a matrix, the column number. |
public getComplexMatrixArray(): Array<Array<Complex>> source
Complex array of complex numbers of each element of the matrix.
public getMatrix(row: KMatrixInputData, col: KMatrixInputData, isUpOffset: boolean): Matrix source
Extract the specified part of the matrix.
Params:
Name | Type | Attribute | Description |
row | KMatrixInputData | A vector containing the row numbers to extract from this matrix. If you specify ":" select all rows. |
|
col | KMatrixInputData | A vector containing the column numbers to extract from this matrix. If you specify ":" select all columns. |
|
isUpOffset | boolean |
|
Set offset of matrix position to 1 with true. |
public getNumberMatrixArray(): Array<Array<number>> source
Array of real parts of elements in matrix.
public idct(type: KMatrixSettings): Matrix source
Inverse discrete cosine transform (DCT-III, IDCT).
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public ifft(type: KMatrixSettings): Matrix source
Inverse discrete Fourier transform (IDFT).
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public indexsort(v: KMatrixInputData): Matrix source
Index sort.
- Sorts by row when setting index by row vector to the argument.
- Sorts by column when setting index by column vector to the argument.
Params:
Name | Type | Attribute | Description |
v | KMatrixInputData | Vector with index. (See the description of this function) |
public inner(number: KMatrixInputData, dimension: KMatrixInputData): Matrix source
Inner product/Dot product.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData | ||
dimension | KMatrixInputData |
|
Dimension of matrix used for calculation. (1 or 2) |
public inv(): Matrix source
Inverse matrix of this matrix.
- Use
dotinv
if you want to useinv
for each element.
public isComplex(tolerance: KMatrixInputData): boolean source
Return true if the matrix is complex matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isComplexInteger(tolerance: KMatrixInputData): boolean source
Returns true if the vallue is complex integer (including normal integer).
- Use only the first element.
- Use
testFinite
if you want to test the elements of a matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isDiagonal(tolerance: KMatrixInputData): boolean source
Return true if the matrix is diagonal matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isFinite(): boolean source
Return true if the value is finite number.
- Use only the first element.
- Use
testFinite
if you want to test the elements of a matrix.
public isHermitian(tolerance: KMatrixInputData): boolean source
Return true if the matrix is hermitian matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isIdentity(tolerance: KMatrixInputData): boolean source
Return true if the matrix is identity matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isInfinite(): boolean source
this === Infinity or -Infinity
- Use only the first element.
- Use
testInfinite
if you want to test the elements of a matrix.
public isInteger(tolerance: KMatrixInputData): boolean source
Return true if the value is integer.
- Use only the first element.
- Use
testFinite
if you want to test the elements of a matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isNaN(): boolean source
this === NaN
- Use only the first element.
- Use
testNaN
if you want to test the elements of a matrix.
public isNegative(): boolean source
this < 0
- Use only the first element.
- Use
testNegative
if you want to test the elements of a matrix.
public isNegativeInfinity(): boolean source
this === -Infinity
- Use only the first element.
- Use
testNegativeInfinity
if you want to test the elements of a matrix.
public isNotNegative(): boolean source
this >= 0
- Use only the first element.
- Use
testNotNegative
if you want to test the elements of a matrix.
public isOne(tolerance: KMatrixInputData): boolean source
this === 1
- Use only the first element.
- Use
testOne
if you want to test the elements of a matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isOrthogonal(tolerance: KMatrixInputData): boolean source
Return true if the matrix is orthogonal matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isPermutation(tolerance: KMatrixInputData): boolean source
Return true if the matrix is permutation matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isPositive(): boolean source
this > 0
- Use only the first element.
- Use
testPositive
if you want to test the elements of a matrix.
public isPositiveInfinity(): boolean source
this === Infinity
- Use only the first element.
- Use
testPositiveInfinity
if you want to test the elements of a matrix.
public isReal(tolerance: KMatrixInputData): boolean source
Return true if the matrix is real matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isRegular(tolerance: KMatrixInputData): boolean source
Return true if the matrix is regular matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isSymmetric(tolerance: KMatrixInputData): boolean source
Return true if the matrix is symmetric matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isTriangleLower(tolerance: KMatrixInputData): boolean source
Return true if the matrix is lower triangular matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isTriangleUpper(tolerance: KMatrixInputData): boolean source
Return true if the matrix is upper triangular matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isTridiagonal(tolerance: KMatrixInputData): boolean source
Return true if the matrix is tridiagonal matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isUnitary(tolerance: KMatrixInputData): boolean source
Return true if the matrix is unitary matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isZero(tolerance: KMatrixInputData): boolean source
this === 0
- Use only the first element.
- Use
testZero
if you want to test the elements of a matrix. - Use
isZeros
to check for a zero matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public isZeros(tolerance: KMatrixInputData): boolean source
Return true if the matrix is zero matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public linsolve(number: KMatrixInputData): Matrix source
Solving a system of linear equations to be Ax = B
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData | B |
public lu(): {L: Matrix, U: Matrix} source
LU decomposition.
- L*U=A
- L is lower triangular matrix.
- U is upper triangular matrix.
public lup(): {P: Matrix, L: Matrix, U: Matrix} source
LUP decomposition.
- P'LU=A
- P is permutation matrix.
- L is lower triangular matrix.
- U is upper triangular matrix.
public mad(algorithm: string | ?number, type: KMatrixSettings): Matrix source
Mean absolute deviation.
- The "algorithm" can choose "0/mean"(default) and "1/median".
Params:
Name | Type | Attribute | Description |
algorithm | string | ?number |
|
|
type | KMatrixSettings |
|
public max(type: KMatrixSettings): Matrix source
Maximum number.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public mean(type: KMatrixSettings): Matrix source
Arithmetic average.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public median(type: KMatrixSettings): Matrix source
Median.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public min(type: KMatrixSettings): Matrix source
Minimum number.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public mod(number: KMatrixInputData): Matrix source
Modulo, positive remainder of division for each element of matrix.
- Result has same sign as the Divisor.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public mode(type: KMatrixSettings): Matrix source
Mode.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public moment(nth_order: number, type: KMatrixSettings): Matrix source
Moment.
- Moment of order n. Equivalent to the definition of variance at 2.
Params:
Name | Type | Attribute | Description |
nth_order | number | ||
type | KMatrixSettings |
|
public mul(number: KMatrixInputData): Matrix source
Multiply.
- Use
dotmul
if you want to usemul
for each element.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public multiply(number: KMatrixInputData): Matrix source
Multiply.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public nchoosek(k: KMatrixInputData): Matrix source
Binomial coefficient, number of all combinations, nCk.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
k | KMatrixInputData |
public ndiv(number: KMatrixInputData): Matrix source
Division for each element of matrix.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public ninv(): Matrix source
Inverse of each element of matrix.
public nmul(number: KMatrixInputData): Matrix source
Multiplication for each element of matrix.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public norm(p: KMatrixInputData): number source
p-norm.
Params:
Name | Type | Attribute | Description |
p | KMatrixInputData |
|
public normcdf(u: KMatrixInputData, s: KMatrixInputData): Matrix source
Cumulative distribution function (CDF) of normal distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
u | KMatrixInputData |
|
Average value. |
s | KMatrixInputData |
|
Variance value. |
public norminv(u: KMatrixInputData, s: KMatrixInputData): Matrix source
Inverse function of cumulative distribution function (CDF) of normal distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
u | KMatrixInputData |
|
Average value. |
s | KMatrixInputData |
|
Variance value. |
public normpdf(u: KMatrixInputData, s: KMatrixInputData): Matrix source
Probability density function (PDF) of normal distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
u | KMatrixInputData |
|
Average value. |
s | KMatrixInputData |
|
Variance value. |
public npow(number: KMatrixInputData): Matrix source
Power function for each element of the matrix.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public or(number: KMatrixInputData): Matrix source
Logical OR.
- Calculated as an integer.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public poisscdf(lambda: KMatrixInputData): Matrix source
Cumulative distribution function (CDF) of Poisson distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
lambda | KMatrixInputData |
public poissinv(lambda: KMatrixInputData): Matrix source
Inverse function of cumulative distribution function (CDF) of Poisson distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
lambda | KMatrixInputData |
public poisspdf(lambda: KMatrixInputData): Matrix source
Probability density function (PDF) of Poisson distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
lambda | KMatrixInputData |
public pow(number: KMatrixInputData): Matrix source
Power function.
- Unless the matrix is a scalar value, only integers are supported.
- Use
dotpow
if you want to usepow
for each element. A real number can be specified.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public powerfft(type: KMatrixSettings): Matrix source
Power spectral density.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public prod(type: KMatrixSettings): Matrix source
Product of array elements.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public qr(): {Q: Matrix, R: Matrix} source
QR decomposition.
- Q*R=A
- Q is orthonormal matrix.
- R is upper triangular matrix.
public rank(tolerance: KMatrixInputData): number source
Rank.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public rem(number: KMatrixInputData): Matrix source
Modulo, positive remainder of division for each element of matrix.
- Result has same sign as the Dividend.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public remainder(number: KMatrixInputData): Matrix source
Remainder of division.
- Result has same sign as the Dividend.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public reshape(row_length: KMatrixInputData, column_length: KMatrixInputData): Matrix source
Change the shape of the matrix. The number of elements in the matrix doesn't increase or decrease.
Params:
Name | Type | Attribute | Description |
row_length | KMatrixInputData | Number of rows of matrix to reshape. |
|
column_length | KMatrixInputData | Number of columns of matrix to reshape. |
public resize(row_length: KMatrixInputData, column_length: KMatrixInputData): Matrix source
Change the size of the matrix. Initialized with 0 when expanding.
Params:
Name | Type | Attribute | Description |
row_length | KMatrixInputData | Number of rows of matrix to resize. |
|
column_length | KMatrixInputData | Number of columns of matrix to resize. |
public roll(shift_size: KMatrixInputData, type: KMatrixSettings): Matrix source
Circular shift.
Params:
Name | Type | Attribute | Description |
shift_size | KMatrixInputData | ||
type | KMatrixSettings |
|
public rot90(rot_90_count: KMatrixInputData): Matrix source
Rotate matrix 90 degrees clockwise.
Params:
Name | Type | Attribute | Description |
rot_90_count | KMatrixInputData | Number of times rotated by 90 degrees. |
public scaleByPowerOfTen(n: KMatrixInputData): Matrix source
Multiply a multiple of ten.
Params:
Name | Type | Attribute | Description |
n | KMatrixInputData |
public setMatrix(row: KMatrixInputData, col: KMatrixInputData, replace: KMatrixInputData, isUpOffset: boolean): Matrix source
Change specified element in matrix.
Params:
Name | Type | Attribute | Description |
row | KMatrixInputData | A vector containing the row numbers to replace in this matrix. If you specify ":" select all rows. |
|
col | KMatrixInputData | A vector containing the column numbers to replace in this matrix. If you specify ":" select all columns. |
|
replace | KMatrixInputData | Matrix to be replaced. |
|
isUpOffset | boolean |
|
Set offset of matrix position to 1 with true. |
public shift(n: KMatrixInputData): Matrix source
this << n
- Calculated as an integer.
Params:
Name | Type | Attribute | Description |
n | KMatrixInputData |
public sign(): Matrix source
The positive or negative signs of each element of the matrix.
- +1 if positive, -1 if negative, 0 if 0, norm if complex number.
public signum(): Matrix source
The positive or negative sign of this number.
- +1 if positive, -1 if negative, 0 if 0.
public skewness(type: KMatrixSettings): Matrix source
Skewness.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public sort(order: string, type: KMatrixSettings): Matrix source
Sort.
- The "order" can choose "ascend"(default) and "descend".
Params:
Name | Type | Attribute | Description |
order | string |
|
|
type | KMatrixSettings |
|
public square(): Matrix source
Square.
- Unless the matrix is a scalar value, only integers are supported.
public standardization(type: KMatrixSettings): Matrix source
The samples are standardize to a mean value of 0, standard deviation of 1.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public std(type: KMatrixSettings): Matrix source
Standard deviation.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public sub(number: KMatrixInputData): Matrix source
Subtract.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public subtract(number: KMatrixInputData): Matrix source
Subtract.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
public sum(type: KMatrixSettings): Matrix source
Sum.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public svd(): {U: Matrix, S: Matrix, V: Matrix} source
Singular Value Decomposition (SVD).
- USV'=A
- U and V are orthonormal matrices.
- S is a matrix with singular values in the diagonal.
public tcdf(v: KMatrixInputData): Matrix source
Cumulative distribution function (CDF) of Student's t-distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
v | KMatrixInputData | The degrees of freedom. (DF) |
public tdist(v: KMatrixInputData, tails: KMatrixInputData): Matrix source
Cumulative distribution function (CDF) of Student's t-distribution that can specify tail.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
v | KMatrixInputData | The degrees of freedom. (DF) |
|
tails | KMatrixInputData | Tail. (1 = the one-tailed distribution, 2 = the two-tailed distribution.) |
public testComplex(tolerance: KMatrixInputData): Matrix source
Test if each element of the matrix is complex.
- 1 if true, 0 if false.
- Use
isComplex
to test whether a matrix contains complex numbers.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public testComplexInteger(tolerance: KMatrixInputData): Matrix source
Test if each element of the matrix is complex integer.
- 1 if true, 0 if false.
- Use
isComplexInteger
if you want to test first element.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public testFinite(): Matrix source
Test if each element of the matrix is finite.
- 1 if true, 0 if false.
- Use
isFinite
if you want to test first element.
public testInfinite(): Matrix source
Test if each element of the matrix is infinite.
- 1 if true, 0 if false.
- Use
isInfinite
if you want to test first element.
public testInteger(tolerance: KMatrixInputData): Matrix source
Test if each element of the matrix is integer.
- 1 if true, 0 if false.
- Use
isInteger
if you want to test first element.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public testNaN(): Matrix source
Test if each element of the matrix is NaN.
- 1 if true, 0 if false.
- Use
isNaN
if you want to test first element.
public testNegative(): Matrix source
real(this) < 0
- 1 if true, 0 if false.
- Use
isNegative
if you want to test first element.
public testNegativeInfinity(): Matrix source
Test if each element of the matrix is negative infinite.
- 1 if true, 0 if false.
- Use
isNegativeInfinity
if you want to test first element.
public testNotNegative(): Matrix source
real(this) >= 0
- 1 if true, 0 if false.
- Use
isNotNegative
if you want to test first element.
public testOne(tolerance: KMatrixInputData): Matrix source
real(this) === 1
- 1 if true, 0 if false.
- Use
isOne
if you want to test first element.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public testPositive(): Matrix source
real(this) > 0
- 1 if true, 0 if false.
- Use
isPositive
if you want to test first element.
public testPositiveInfinity(): Matrix source
Test if each element of the matrix is positive infinite.
- 1 if true, 0 if false.
- Use
isPositiveInfinity
if you want to test first element.
public testReal(tolerance: KMatrixInputData): Matrix source
Test if each element of the matrix is real.
- 1 if true, 0 if false.
- Use
isReal
to test for complex numbers in matrices.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public testZero(tolerance: KMatrixInputData): Matrix source
real(this) === 0
- 1 if true, 0 if false.
- Use
isZero
if you want to test first element. - Use
isZeros
to check for a zero matrix.
Params:
Name | Type | Attribute | Description |
tolerance | KMatrixInputData |
|
Calculation tolerance of calculation. |
public tinv(v: KMatrixInputData): Matrix source
Inverse of cumulative distribution function (CDF) of Student's t-distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
v | KMatrixInputData | The degrees of freedom. (DF) |
public tinv2(v: KMatrixInputData): Matrix source
Inverse of cumulative distribution function (CDF) of Student's t-distribution in two-sided test.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
v | KMatrixInputData | The degrees of freedom. (DF) |
public tpdf(v: KMatrixInputData): Matrix source
Probability density function (PDF) of Student's t-distribution.
- Calculate from real values.
Params:
Name | Type | Attribute | Description |
v | KMatrixInputData | The degrees of freedom. (DF) |
public tridiagonalize(): {P: Matrix, H: Matrix} source
Tridiagonalization of symmetric matrix.
- Don't support complex numbers.
- PHP'=A
- P is orthonormal matrix.
- H is tridiagonal matrix.
- The eigenvalues of H match the eigenvalues of A.
public variance(type: KMatrixSettings): Matrix source
Variance.
Params:
Name | Type | Attribute | Description |
type | KMatrixSettings |
|
public xcorr(number: KMatrixInputData): Matrix source
ACF(Autocorrelation function), cros-correlation function.
- If the argument is omitted, it is calculated by the autocorrelation function.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
|
Matrix to calculate the correlation. |
public xor(number: KMatrixInputData): Matrix source
Logical Exclusive-OR.
- Calculated as an integer.
Params:
Name | Type | Attribute | Description |
number | KMatrixInputData |
Private Methods
private _concatBottom(bottom_matrix: KMatrixInputData): Matrix source
Combine matrix to the bottom of this matrix. (mutable)
Params:
Name | Type | Attribute | Description |
bottom_matrix | KMatrixInputData | Matrix to combine. |
private _deleteColumn(delete_column_index: KMatrixInputData): Matrix source
Remove the column in this matrix. (mutable)
Params:
Name | Type | Attribute | Description |
delete_column_index | KMatrixInputData | Number of column of matrix to delete. |
private _deleteRow(delete_row_index: KMatrixInputData): Matrix source
Remove the row in this matrix. (mutable)
Params:
Name | Type | Attribute | Description |
delete_row_index | KMatrixInputData | Number of row of matrix to delete. |
private _rot90(rot_90_count: KMatrixInputData): Matrix source
Rotate matrix 90 degrees clockwise. (mutable)
Params:
Name | Type | Attribute | Description |
rot_90_count | KMatrixInputData | Number of times rotated by 90 degrees. |